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Particle motion in laminar vertical tube flow 
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Some experimental results are presented for the motion of small rigid spherical 
particles suspended in a Newtonian viscous liquid flowing under steady laminar 
conditions in a vertical tube of circular cross-section. When the particles were 
neutrally buoyant, the Segr6 & Silberberg (1961, 1962) effect was confirmed, the 
particles moving into a narrow annular zone with a diameter about two-thirds 
of the tube diameter. When the particles were slightly denser than the fluid, they 
migrated relatively rapidly to the wall of the tube for downward fluid flow and 
to the axis of the tube for upward fluid flow. Individual particle trajectories were 
obtained (necessarily approximately) from photographic records, and statistical 
techniques used to obtain ‘universal’ paths for given flow conditions. A com- 
plete set of relevant dimensionless parameters is given by the tube flow Reynolds 
number, the ratio of the tube diameter to the particle diameter, and the ratio of 
the Stokes free-fall velocity of the particle to the maximum fluid velocity. An 
attempt has been made to study the dependence of the trajectories on each of 
these parameters, the ranges being 10-200, 10-20 and 0-0.2 respectively. 
Detailed results can be found in Jeffrey (1964). Some comments are made on 
the relevance for this situation of certain theoretical solutions given elsewhere. 

1. Introduction 
Segrk & Silberberg (1961, 1962) have reported, for dilute suspensions of 

neutrally buoyant rigid spherical particles in a Newtonian liquid moving in 
Poiseuille flow in tubes, an unexpected effect that had previously been over- 
looked or wrongly interpreted. By means of a numerous series of experiments, 
they showed that particles migrate, admittedly slowly, into a thin annular region 
concentric with the tube axis at a radius about 0.6 of the tube radius. Their 
method depended essentially on observation of the number of particles passing 
through fixed cross-sections of the tube, as a function of the radius. Although 
admirably suited to giving statistical information about large numbers of 
particles, this technique still left some uncertainty as to the paths traced out by 
particular particles. The method we have used involved following individual 
particles by direct photographic means. Because of the very slow migratory 
movement in neutral density experiments, the errors in our observations have 
been relatively large; however, by combining the trajectories of several particles 
under otherwise fixed conditions, we have been able to obtain statistically 
significant smoothed particle paths. 

In  attempting to obtain exactly neutrally buoyant conditions for spherical 
particles, we noticed that slight differences in density between particles and fluid 
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led to totally different and much more rapid migratory velocities, and we have 
investigated a few selected cases. For these the errors in observation were 
relatively less important and so fewer observations at fixed conditions were 
necessary to establish smooth particle paths. The results we present here are 
thought to be essentially new, though recent work by Eichhorn & Small (1964) 
and Repetti & Leonard (1964) overlaps to some extent. The results of Oliver 
(1962) and Goldsmith & Mason (1962, 1964) are also relevant. 

The physical variables defining the flow at any instant of time, t ,  are: 
R the radius of the tube 
a the radius of the particle 

V, the fluid velocity on the tube axis 
,u the viscosity of the fluid 
pt the density of the fluid 
p p  the density of the particle 

g the acceleration of gravity 
(r, 8, z )  cylindrical polar co-ordinates relative to an origin on the tube axis 

(aT, Ug,  u,) the velocity components of the fluid in the (T, 6, z) co-ordinate 

(rp,  S,, z,) the co-ordinates of the centre of a given particle 
(K, 5, V,) the velocity components of the centre of the particle 
(G?, we, 0,) the angular velocity components of the particle 
Significant variables are shown in figure 1, 

system 

R 4  
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Because of the symmetry of the flow, we shall suppose that 

723 

ue = V, = W, = 0, = 0, 

and that V,, V ,  and we are functions of T and z only. These assumptions require 
only that the flow be laminar, which will be true provided that the tube Reynolds 
number, 

be smaller than about 2000. If, however, we suppose that the flow is also ‘slow’ 
(a term that must be explained later in more detail), then we can assume that 
inertia forces act as perturbations to the flow that would occur according to the 
Stokes (linearized) equations. For these linearized flow equations, it  may be 
shown (Saffman 1956; Happel & Brenner 1958; Brenner 1962, 1964; Bretherton 
1962; Cox 1964) that spheres do not experience transverse forces and so V ,  = 0 
also. This has been verified experimentally by Goldsmith & Mason (1961) for 
very slow flows. In  order to assess the effects of the non-linear terms, we can 
define three further Reynolds numbers, a particle Reynolds number 

(2) 

a shear Reynolds number, based on the mean shear in the fluid and the particle 

(3) radius, 

and a free-fall Reynolds number 

= vF (4) 

where vF = 4aa(pp - pf) g/ 8p ( 5 )  

= Pf & (1) 

Re, = pf&a/p  = Re,a/R, 

Re, = pf &a2/Rp = Re, a2/R2, 

is the Stokes free-fall velocity. If we now define the dimensionless variables 

Fp = rp/R, Z p  = zp/R, f =  tV,/R, 
(6) I F’ =r /R ,  X = z/R, VF = VF/V,, 

U,. = u,lV,, Ue = ue/V,, Uz = uz/T<, 

= V,/V,, = o = wsR/V,, 

then the relevant equations of motion and boundary conditions can be written 
in terms of the co-ordinates (P, 8, Z) and (FP, 8,, Z p ) ,  the velocities (5, ae, Gs) and (c, c, w),  the time 8 and the three Reynolds numbers ReT, Re, and Re, defined 
earlier. (The dimensionless ratio P = a/R = Re,/Re, can be used as an alterna- 
tive to Re,, while s. can take the place of Re,.) 

In  the absence of any particles, the tube flow is given by 

(7) 
- 
u,. = ue = 0, ;iz = (1-F“); 

to a first approximation, where all Reynolds numbers and P are small we suppose 
that the motion of any particle is given by 

- - 
V,= 0, V ,  = ; i Z ( T p ) =  l - P &  w = - r  P’ * (8) 

V ,  = Er, v, = 1--2 rp+ED, w = -Pp+wl, (9) 

the result for w follows fairly readily from a solution of Stokes’s equations; 
migratory effects are thought of as being due to small changes in the ‘solution’ 
(8), so that 

where E,, Ez and w1 are functions of RenT, Re, and Re, and of the various 

- - 
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co-0rdinates.t We now further assume that in the second approximation these 
functions are dependent only on the co-ordinate Fp and not on Zp or t explicitly 
i.e. that the flow is always quasi-steady or, equivalently, that the terms involving 
(a/%) in the dimensionless equations of motion are not appreciable compared 
with the non-linear inertia terms. 

We shall not attempt to develop these plausible assumptions theoretically but 
use them to interpret our observations. Indeed, our experiments were made 
with the object first of determining whether and when these assumptions held 
and secondly to obtain what information we could about the dependence of the 
function V ,  on Fp, ReT, Re, and Re,. A brief description of the apparatus and 
experimental technique is given in $2, the results are presented in $ 3 and the 
relevance of certain analytic asymptotic solutions is discussed in $4. 

2. Apparatus and experimental technique 
A schematic lay-out of the apparatus is shown in figure 2. The tube in which 

all experiments were performed was a vertical glass tube about 150 cm long and 
of internal diameter 3-25 em; the axis of the tube departed from the vertical by 
less than 4 mm over its entire length and tests showed that the inner surface was 
of uniform diameter. The test section, 130 cm long, was formed by surrounding 
the tube by two Perspex boxes, each 60cm long and 8cm square, filled with 
aqueous glycerol solution of refractive index 1.44, the index for the glass tube 
being 1.475. Since the fluid used for the experiments was also an aqueous 
glycerol solution of about the same refractive index, this meant that optical 
distortion in viewing particles through the tube/box arrangement was small 
( < 0.02cm in position for uncorrected photographs). A 16mm Pathe cine 
camera was used to record the passage of particles through the test section. 

The particles used were selected from a batch of white polymethyl-metha- 
crylate spheres of a nominal diameter of & in. One (hemispherical) half of each 
particle was very thinly sprayed with black paint. The density of the particles 
was measured to be 1.193g/cm3 in the temperature range 18-23 "C. The particles 
used were of three sizes: (i) a group with diameter in the range 0.288-0.293 cm 
chosen directly from the full batch, (ii) a group of diameter 0.201 k 0.002 cm, 
and (iii) a group of diameter 0-150+0-001cm; the latter two groups being 
obtained by grinding down particles of the largest size. The physical properties 
of the glycerol/water mixtures used for the suspending fluid were taken 
from Miner & Dalton (1953), the precise composition being determined by 
re fractometry . 

A 'Mono' pump was used to obtain closed-circuit operation, the pump being 
particularly suited to handling diIute suspensions of spheres in a fluid of the 
viscosity used (this was in the range 10-50 cP) and of providing a steady pressure 
gradient. Because the viscosity of the fluid was highly sensitive to temperature 
changes, as near isothermal conditions as could be achieved were required within 
the test section; to do this, a heat exchanger was built into the circuit and the 

t We shall expect ?jr, v, and w ,  to go to zero with P ,  i.e. with Rep for ReF 0; the Simha 
(1936) result puts ?jz = - #Pz. 
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system run until steady temperature conditions were achieved. Temperature 
control proved to be the chief source of experimental difficulty. 

Particle injectors were placed above and below the test section and were 
designed to inject a particle at any required position on a tube diameter at right 
angles to the plane formed by the tube axis and the camera. 

To atmosphere 

Thermometers 

Particle injection 
devices 

Heat exchanger 

I 
Variable speed ‘Mono’ Constant 

temperature bath gearbox Pump 
FIGURE 2. Schematic lay-out of apparatus. 

Successive frames on cine film provided the basic information about pafiicle 
trajectories. By simple measurement on negatives (or projected enlargements 
thereof), sets of data in the form 

could be obtained for each particle. Here t,, z, and r,  have their obvious signifi- 
cance, while 4, represents the angle of rotation of the spherical particle about 
its axis of rotation.? Using the notation of § 1, 

t n a , ~ m , r m , # m  (m=  1,2,*-* ,n)  (10) 

t & information was not, and indeed could not be, included for every particle, but only 
for those for which the black-white interface was suitably oriented initially. 
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Information about fluid velocity, in particular about V,, in any set of steady 
conditions could be obtained by studying the trajectories either of very small 
air bubbles or of very small particles, other authors (Goldsmith & Mason 1961) 
having shown that, to the accuracy involved here, these move with the fluid. 
Values of V, were obtained in this way. The data sets (10) were transferred into 
encoded punched paper tape and were then analysed on the Department’s I.B.M. 
1620 computer. ‘Best fitting ’ analytic functions, usually polynomial expansions, 
of the form 

z = Z ( t ) ,  (12) 

r = B(t),  (13) 

r = C(z), (14) 

were obtained by standard methods for each particle. By differentiation, we 
could obtain estimates for the velocity components 

v, 1: azp, 
V ,  N dB/dt; 

similarly the angular velocity was obtained from 

0 6  N @I& (17) 

the 6 notation indicating that direct numerical differentiation was employed. 
A check on (16) and (16) was provided by 

v,/v, 21 dCldz. (18) 

We next assumed that, for fixed Re,, Re, and Re,, V ,  and V ,  were functions of 
r only, and so by choosing origins for t and z suitably, we could expect to fit a12 
data points for all particles (using particles of one particular size and under fixed 
flow conditions) by a ‘universal’ function. This was done for each group of 
particles. Standard statistical tests could then be employed to decide whether 
such universal functions were significantly worse fits to any given particle path 
than the individual fitted functions. In the case of neutrally buoyant particles, 
we decided that universal curves were valid and further that observed axial 
velocity was the best evidence for estimating Fp. 

Finally we attempted, in a purely empirical way, to combine universal curves 
for various ReT, Re, and Re, by means of dimensionless scaling according to 
powers of the various Reynolds numbers. However, as these proved to have 
little evident dynamical validity, they will only be mentioned in passing. 

3.1. 3. Results Rotation of particles 
We compared, for a selection of particles, the angular velocity with which they 
rotated with the vorticity that the fluid would have had at  the position of the 
centroid in the absence of the particle, i.e. we sought to verify the relation 

Dimensionless plots are shown in figure 3 for various values of ReT and Re, 
with ReT/Rep, i.e. P ,  constant. For the case of neutrally buoyant particles, 
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figure 3 ( c ) ,  some systematic departure was observed, the particles rotating some 
7 yo more slowly than might be predicted. But for the ‘denser’ particles, the 
departures from equation (19) were not significant (in a statistical sense), bearing 
in mind the inaccuracy of measurement. 
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3.2. Axial velocity of particles 

Neutrally buoyant particles 
Figure 4 shows values of V ,  that were calculated according to (15) for various 

particles. For convenience V ,  has been plotted against (1 - P) ,  the straight lines 
representing the corresponding undisturbed fluid u,(Tp), deduced from observa- 
tion of small tracer particles. Representative, usually extreme, values of V ,  for 
each particle are shown. The scatter was assumed to be due largely to errors in 
measuring TP, and so it was decided to try using V ,  (=  V,E) as a measure of Fp 
according to = (1 - Q. 

14 

12 

10 

4 

2 

0 0.2 0 4  0-6 0.8 1 .o 
1 --f2 

FIGURE 4. Axial velocity V, vs. 1 -fp for neutrally buoyant particles. 2a = 0.291 cm; 
P = 00.9. Different symbols close to any line refer to different particles. 

Figure 5 shows (?Jobs. plotted against (Fp)calc. together with expected maxi- 
mum possible errors. At the same time, we plotted E-Zz against (T)obs. (see 
figure 6) together with expected maximum possible errors. This curve also shows 
the values of Vs - Tiz that would be expected according to Simha (1936) and more 
recently to Repetti & Leonard (1964, based on results provided by Goldsmith 
& Mason). It is seen that all lie within the range of experimental inaccuracy. For 
convenience, we decided to use (Tp)calc. rather than (TJobs. when investigating 

for later experiments-it was an estimate of the latter function that formed 
the primary object of the investigation. 

Dense particles 
In  this case the value of the function E- ?ja was much larger than in the case 

of the neutrally buoyant particles; indeed it was a primary variable. Figure 7 
shows V ,  plotted against 1 - T2 for two cases (with various Re, and Re,, but with 
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P fixed): (a) where the net gravitational force on the particle was in the same 
direction as the mean flow, i.e. downwards, (b )  where the mean flow was in the 
opposite direction, i.e. upwards. In  case (a )  the particles moved towards the walls 
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0 0.2 0.4 0.6 0.8 1.0 
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FIGURE 5. Calculated and observed radial positions for neutrally buoyant particles. 
Different symbols refer to different particles. 

x 10-2 

8 1 

- 8  . 
- 10 I I I I 

0 0.2 0.4 0-6 0.8 I -0 

( f lJOb8.  

FIGUKE 6. Axial velocity lag vZ--Zz vs. (Tg)obs. for neutrally buoyant particles: 0, 
2a = 0.291 cm, P = 0.090; m, 2a = 0.201 cm, P = 0.062; f, 2a = 0.150 om, P = 0.046. 

of the tube, 1 - T2 = 0, and in case (b) towards the axis, 1 - T2 = 1. Also included 
are tentative straight lines, which suggest strongly that the particles do not fall 
through the flowing fluid with the free-fall velocity FF (see equation (6)) but 
with a relative velocity 

(20) FR = Vp(l -P) .  
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(b )  
FIGURE 7. Axial velocities (V,) for dense particles: 2a = 0.291 cm; P = 0.09. (a) Down- 
ward flow, Vp = 0.21 cm/sec, Re, = 0.147; ( b )  upward flow, Vp = 0.78 cm/sec, 
ReF = 0.545. 
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The scatter of the points in figure 7 ( b )  is caused partly by entry (injection) 
effects-the particles moved so rapidly to the axis that it was difficult to observe 
many particles with low values of 1 -F2. Nevertheless, it appeared that there 
may be some systematic difference between cases (a) and (b ) .  We do not have 
sufficient information at this stage to say how this behaviour depends upon P ,  
nor can we present any satisfactory explanation for the form of equation (20). 

3.3. Radial velocity of particles 

Neutrally buoyant particles 
The velocities in this case were very slow and so any one particle migrated only 

a short distance during its passage through the observation chamber. As 
explained above in 5 3.2, we decided that axial velocity was as good a measure 
of radial position as direct observation, and indeed consistent values of x were 
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f n  

obtained on this basis. Figure 8 presents results for P fixed and Re, varying 
between 10 and 80. A good empirical correlation was obtained by plotting 
T(ReT)-*P-2 against F p ,  rather than C(Re,)-l. Figure 9 presents results for 
a limited range of F p  for three values of P; correlation has been obtained by 
plotting c(Re,)-*P-2 against F p .  A recent paper by Saffman (1965), which came 
to the authors' notice after the empirical correlation had been noted, suggests 
that this non-integral dependence on Re, may be genuine. Although Segr6 
& Silberberg suggest that better correlation is obtained using ii';(ReT)-lP3 
than by using c(Rer)-*P-2 their experimental evidence barely distinguishes 
between the two possibilities; this is explained and demonstrated in detail in 
Jeffrey (1964). A further suggestion (Saffman 1965) that results should be 
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correlated according to c(ReT)-# P3 leads to yet another grouping of points 
that is neither clearly better nor worse than others. It is worth pointing out that 
the values of Re, involved are larger here than for Segrh & Silberberg’s work or 
for Goldsmith & Mason’s. It can therefore be argued that the observations made 
here are of a situation where terms of higher order than the second (see equation 
(9)) are dominant. 

x 

Ei 

1 0 - ~  

8 -  

6 -  

4 -  

3 -  

2 -  

1 -  
8 -  

0.6 0.7 0.8 
TP 
- 0.9 

FIGURE 9. Radial velocity plotted as c(ReT)-&P-2 vs. f9. Neutrally buoyant particles. 
0, P = 0.09; ., P = 0.062; +, P = 0.046. 

Dense particles 

The radial velocities were larger in this case and directly calculable from 
photographs using (16), though smoothed curves from figure 7 were also used to 
derive Fp from V ,  data. Figure 10 shows results for case (a) ,  downward fluid flow; 
results are plotted in the form r/Re,P against Fp, this choice of dimensionless 
scaling having been adopted to correspond with some theoretical predictions of 
Rubinow & Keller (1961), discussed later.? From a purely empirical point of 
view, it was found that better correlation was obtained by considering c(Re,)-g. 
Figure 11 shows corresponding results for case (b ) ,  upward fluid flow. Although 
the general pattern in cases (u) and (b )  appearsd to be similar, systematic differ- 
ences could be detected; i.e. for fixed ReT, Re, and P ,  reversing the sign of V, 
seemed to change the magnitude of 

be preferred on theoretical grounds. 

as well as its sign. 

f This choice should not be thought as implying that the Rubinow & Keller result is to 
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FIGURE 10. Radial velocity, comparison with Rubinow & Keller (1961): rJRepPvs.  f n .  
Dense particles. 

(a) Downward flow: -, +f9( 1 - fi). 
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(b)  Upward flow: - 
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7 

Re!r 

46- 1 
61.3 
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21.2 
23.9 
52.4 

115 

113 

4. Discussion 
First, let it be emphasized that the results reported here are not exhaustive, 

and cannot be more than indicative of the quantitative nature of general particle 
migration in Poiseuille flow. The qualitative picture is however quite clear. 
Dense particles falling slowly through an upward moving fluid migrate to the 
tube axis; buoyant particles in the same flow migrate to the tube wall (though 
quantitative results for this case have not been given here, the effect has been 
confirmed). Conversely, dense particles falling through a downward moving 
fluid migrate to the tube walls and buoyant particles to the tube axis. 

The orders of magnitude of the various forces acting must be dependent on 
the values of the three Reynolds numbers, ReT, Re, and Re,, defined by equa- 
tions (1), (2) and (4), but it is not a t  all clear which combinations are relevant for 
those forces causing migration. All that we can say is that these forces are non- 
linear (it having been noted in $ 1  that linearized equations do not lead to 
migration), and that if all the Reynolds numbers are sufliciently small, then the 
observed radial migration will be, to first order, the result of a balance between 
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these non-linear ‘lift’ forces and the linear ‘Stokes’ drag of a particle moving 
relative to the fluid, i.e. 

pK,alfn(Re,, Rep, Re,, F p ) ]  = p&a[6nK]. 

Thus if we measure the radial velocity V,q, use of (21) gives us the lift force. 
By taking a sufficient number of observations in (Re,, Re,, Re,, Fp)-space, it 
might be possible to determine the functional dependence observationally, but 
this is unlikely to be very rewarding because of the difficulty of getting accurate 
measurements over a sufficient range of each of the variables. It is likely to prove 
more profitable in the long run to compare a limited range of observations with 
a theoretical prediction for lift force, based on asymptotic expansions using 
solutions of the linearized equations of motion as the first terms of the expansions. 
Unfortunately no complete expansion procedure including simultaneously the 
effect of sheared fluid flow, presence of tube walls and gravity forces has yet been 
attempted; a semi-empirical comparison with the Rubinow & Keller (1961) 
result for a particle rotating and translating in an otherwise-stationary fluid is 
one that has been persistently suggested. In  this we neglect (!) the parabolic 
velocity profile of the moving fluid, and use the actual angular velocity w (see 
equation (19)) of the particle, and its relative axial velocity c-?& to evaluate 
the lift force PI according to the relation 

The ‘predictions’ for q, using (21) and the observed values for w and (F-Z&), 
are shown as full lines in figures 10 (a) and (b ) .  Although the comparison is hardly 
convincing, the correspondence between the r-dependence of observed and calcu- 
lated curves is surprisingly good. Saffman (1965) has shown theoretically that 
a migratory velocity of the form E/Re,P + 80F$(Re,)-* should in any case 
dominate the Rubinow & Keller velocity if circumstances were such that either 
should strictly apply. This value proves to be far too large numerically by com- 
parison with observed results (by a factor of the order of 5 on the ordinate scale 
of figure lO(a) for Fp = 0*5), but has an acceptable dependence on FD away from 
the tube walls. 

Returning to  the question of what constitutes a slow flow, we see that, in all 
the cases we have reported, the radial migratory velocities lead to very small 
(< 1) Reynolds numbers, KupJp, the free-fall Reynolds numbers Re, are 
small ( <  l ) ,  the particle shear Reynolds numbers Re, are small (<  l), though 
the particle Reynolds numbers Re, are of the order of 1-10. Since it is usually 
assumed that asymptotic expansions are only likely to  lead to useful approxima- 
tions when the expanding parameter is of order unity or less, it is clearly 
important to decide what the relevant expansion parameters are, before we can 
decide whether we are observing a ‘slow’ flow. The neutrally buoyant results, 
where Re, = 0, suggest that Res_or even PRe, is the relevant quantity for that 
special situation. By writing (V,-?&) = O(PRe,/Re,) relations (22) and (21) 
suggest that PSRe, is then also relevant for the case of dense particles. The 
important point seems to be that Re, can be large, and that Re, as such may not 
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have to be small. The effect of Re, is likely to be a subtle one, in that it may 
determine which of several essentially separate perturbation effects, each a slow 
flow in the true sense, is dominant. 
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